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Possibilistic graphical models are powerful modeling and reasoning tools for uncertain
information based on possibility theory. In this paper, we provide an analysis of com-

putational complexity of MAP and MPE queries for possibilistic networks. MAP queries

stand for maximum a posteriori explanation while MPE ones stand for most plausible
explanation. We show that the decision problems of answering MAP and MPE queries

in both min-based and product-based possibilistic networks is NP-complete. Definitely,

such results represent an advantage of possibilistic graphical models over probabilistic
ones since MAP queries are NPPP -complete in Bayesian networks. Our proofs for query-

ing min-based possibilistic networks make use of reductions from the 3SAT problem

to querying possibilistic networks decision problem. Moreover, the provided reductions
may be useful for the implementation of MAP and MPE inference engines based on the

satisfiability problem solvers. As for product-based networks, the provided proofs are
incremental and make use of reductions from SAT and its weighted variant WMAXSAT.

Keywords: Complexity, Possibilistic networks, MAP inference, MPE inference

1. Introduction

Belief graphical models, such as Bayesian networks [1], credal networks [2], or possi-

bilistic networks [3] are powerful means to compactly represent uncertain informa-

tion taking advantage of independence relationships. Despite the fact that they share

many properties with probabilistic models, possibilistic networks have many inter-

esting properties when modeling and reasoning with qualitative and partial infor-

mation. For example, in a qualitative possibilistic framework, certain non-negligible

gains can be made thanks to the idempotency property of the possibilistic operators

(minimum and maximum) which can benefit the inference algorithms, as highlighted
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in [4]. Recent works [5–8] apply possibilistic techniques to semantic Web. Thus, pos-

sibility theory [9,10] is a natural alternative to represent and reason with some types

of uncertainties. It is particularly suitable when only the ordering of plausibility be-

tween events makes sense. There are two main interpretations of possibility theory.

The first one, based on the minimum operator, is called qualitative possibility the-

ory. Here, the unit interval [0, 1], used to weight the degrees of plausibility of events,

is an ordinal scale. The second interpretation, called quantitative possibility theory,

is based on the product operator. Here, the possibilistic interval [0, 1] is used in the

general sense (as in standard probabilities).

Inference in possibilistic networks has been extensively studied and many algo-

rithms have emerged. On the other hand, while the results of the computational

complexity of inference in Bayesian and probabilistic networks in general are well

established [11–13], there is no such deep study for possibilistic networks. This pa-

per aims at filling this gap. More precisely, this paper provides results representing

additional advantages of possibilistic models in terms of computational complexity

of inference and query answering [9, 10].

Essentially, in graphical models there are three common types of queries: com-

puting most probable (or plausible) explanation (MPE); computing a posteriori

probability (or possibility) degrees (Pr); and computing the maximum a posteriori

explanation (MAP ). These tasks are known to be very hard in the probabilistic set-

ting. Indeed, the decision problems associated to MPE, Pr, MAP are NP -complete,

PP -complete and NPPP -complete respectively (see [12,13] for further details on the

computational complexity of inference in probabilistic graphical models).

This papera focuses on most plausible explanation (MPE) and maximum a pos-

teriori (MAP ) queries in the context of qualitative and quantitative possibilistic

networks. One of the main results is to show that querying possibilistic networks

is less costly than querying their probabilistic counterparts. More specifically, we

show that the decision problems corresponding to the MAP and MPE queries in

possibilistic models is NP -complete. The proofs, built incrementally, are provided

for qualitative and quantitative models. The hardness of the decision problem of

MAP (resp. MPE) in possibilistic networks, is shown on a special type of possibilis-

tic networks called binary and Boolean possibilistic networks. Thus, we provide a

reduction from 3SAT to a MAP query (resp. MPE) on a binary and Boolean possi-

bilistic network. Finally, we provide reductions from querying possibilistic graphical

models to two well-known NP -complete problems: weighted SAT and MaxSAT de-

cision problems.

The remainder of this paper is structured as follows : Section 2 provides basic

aThis paper is an extended version of a conference paper presented at ICTAI’18 [14]
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concepts on possibilistic networks. Section 3 focuses on motivations and reviews

related works. Section 4 introduces the definition of MAP and MPE inference in

possibilistic networks and gives our first results on the computational complexity

of these inferences. Section 5 presents an overview of our solution to prove the

complexity results of the decision problems considered in this paper. The remaining

sections provide the polynomial reductions used in this paper.

2. A brief refresher on possibility theory and possibilistic networks

In this section, we recall the main concepts of possibility theory and possibilistic

networks (for further details, refer to [9] [15–17]). One of the main building blocks

of possibility theory is the concept of a possibility distribution denoted by π. It is

a mapping from the universe of discourse Ω (a finite and discrete set of all states of

the world) to the unit interval [0, 1]. By convention, a state ω∈Ω such that π(ω)=1

denotes that ω is fully possible while π(ω)=0 means that it is impossible that ω

is the real world. If there is at least one state ω∈Ω such that π(ω)=1, then the

possibility distribution π is said to be normalized.

Given a possibility distribution π, one can define a possibility measure, defined

for each event (subset of states) φ⊆Ω, by:

Π(φ) = max{π(ω) : ω ∈ φ}. (1)

Π(φ) assesses to what extent φ is coherent (compatible) with available informa-

tion encoded by π.

Possibility degrees can be interpreted either quantitatively (product-based in-

terpretation) like in probability theory or qualitatively (min-based interpretation)

which considers degrees on an ordinal scale. Hence, the two interpretations lead to

different ways to deal with possibility degrees. In particular, conditioning, namely

updating the current beliefs given a new evidence, differs depending on the quanti-

tative or qualitative interpretation of possibility degrees. We denote the min-based

conditioning by |m [9, 18] and it is defined as follows : Given a possibility distribu-

tion π encoding the current beliefs, and a new evidence φ⊆Ω (with Π(φ) > 0), the

conditional distribution π(.|mφ) is obtained following Equation 2:

π(ωi|mφ) =


1 if π(ωi) = Π(φ) and ωi ∈ φ;

π(ωi) if π(ωi) < Π(φ) and ωi ∈ φ;

0 otherwise.

(2)

The product-based conditioning is denoted by |∗ and it is defined as follows :

π(ωi|∗φ) =


π(ωi)

Π(φ)
if ωi ∈ φ;

0 otherwise.
(3)



April 24, 2020 11:21 WSPC/INSTRUCTION FILE IJAIT-Special-issue-
ICTA18
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We will simply write π(ω|φ) to indifferently refer to π(ω|mφ) or π(ω|∗φ) when

there is no ambiguity.

A possibility distribution can be compactly represented in the form of a graphical

model also known as a possibilistic network. As in probabilistic graphical models,

a possibilistic network denoted PN =< G,Θ > is composed of two components:

• A directed acyclic graph (DAG) G where each node represents a discrete

variable (from the set of variables V = {X1, .., Xn}) and edges encode

independence relations between variables.

• A set of local normalized possibility distributions Θ including a local table

Θi = πPN (Xi|par(Xi)) of each node Xi given its parents par(Xi). The

normalization condition on local possibility distributions is defined by:

∀uij ∈ Dpar(Xi) max
xi∈DXi

πPN (xi|uij) = 1.

At the semantical level, a possibilistic network encodes a unique joint possibility

distribution obtained using the so-called chain rule. Depending on the used condi-

tioning, there are also two definitions of the chain rule that can be used to derive

a joint distribution underlying a possibilistic network. Let us denote by PNm (re-

spectively PN ∗) a min-based (respectively a product-based) possibilistic network.

Then, the chain rule for these possibilistic networks is defined as:

πPNm(X1, .., Xn) = min
i=1,..,n

πPNm(Xi|m par(Xi)).

and (4)

πPN∗(X1, .., Xn) =
∏

i=1,..,n

πPN∗(Xi|∗ par(Xi)).

where
∏

is the product operator.

Example 2.1. In Figure 1, we find an example of a possibilistic network over four

Boolean variables V = {A,B,C,D}. On this figure, the domain of each variable X

involves only two values denoted x and ¬x.

For the sake of simplicity and when there is no ambiguity, PN will refer indif-

ferently to PNm or PN ∗.

3. Motivations and related works

Possibilistic networks may offer some advantages over probabilistic graphical models

especially when it comes to modeling and reasoning with qualitative and partial

uncertainty. Moreover, possibilistic netwoks may also offer nice features regarding

practical and computational issues. This section provides two illustrations of nice

features when it comes to modeling complex problems.
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A

BC

D

A πPN (A)

a 1
¬a .6

B A πPN (B|A)

b a .3
¬b a 1
b ¬a 1

¬ b ¬a .7

D B πPN (D|B)

d b 1
¬d b .4
d ¬b .4

¬d ¬b 1

C B πPN (C|B)

c b 1
¬c b .5
c ¬b 1

¬c ¬b .3

Fig. 1. Example of a possibilistic network PN over four boolean variables.

3.1. The problem of probability underflow or undistinguishable

likelihoods

Many real-world problems (such as forecasting [19], simulation of physical [20] or

biological systems [21, 22], etc.) need to model a sequential or a dynamic system

involving many variables over long time periods. In this case, inference typically

comes down to computing the likelihood of an outcome or any event of interest

given some inputs. The problem then is that inferences for long sequences lead

inevitably to what is called probability underflow problem due to propagating a long

series of small probabilities (indeed, the computer representation of real numbers

does not allow to represent extremely small probabilities and rounds them to zero).

Consequently, some events with relatively different likelihoods will be associated to

the same likelihoods. A very commonly used alternative is to rely on log likelihoods

instead of computing the likelihood itself but then over long sequences this can lead

to the overflow problem. Thanks to the use of idempotent operators such as the

maximum and minimum, possibilistic propagation will not encounter such issues.

3.2. High computational complexity

It is well-known that, in the general case, inference in probabilistic models is a hard

task. More precisely, the decision problem associated with MAP is NPPP -complete.

The interested reader can refer to [12, 13] for more details on complexity issues

in Bayesian and credal networks. As mentioned in the introduction, it is worth to

note that while complexity studies of inference in probabilistic graphical models

are well-established [11], there is to the best of our knowledge no systematic study

of inference issues in possibilistic networks (except a study of complexity of some

inference tasks in possibilistic influence diagrams [16]). Of course, some propagation

algorithms for probabilistic networks have already been adapted to the possibilis-
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tic setting and seem to show the same complexity. Among the seminal works on

inference in possibilistic graphical models we find [23] focusing on inference in hy-

pergraphs. Apart form that, most of the works are more or less direct adaptations of

probabilistic graphical model inference algorithms. For instance, an elimination vari-

able algorithm can be found in [24] in the context of possibilistic network classifiers

while in [15], we find a possibilistic counterpart of the Message passing algorithm.

In [25], the authors propose a direct adaptation of the Junction tree algorithm for

the possibilistic setting. Possibilistic models could be used to approximate inference

in some imprecise probabilistic models as proposed in [26] where an approach based

on probability-possibility transformations is used to perform approximate MAP in-

ference in credal networks. Clearly, modeling and reasoning with complex problems

involving many variables will not be tractable unless strong assumption are made re-

garding the structure of the graphs. In this paper, one of the main results is to show

that querying possibilistic graphical models has a lower computational complexity

than querying probabilistic ones.

4. Possibilistic networks : Reasoning and inference

In this paper, we investigate two of the most common types of queries when reason-

ing with graphical models, that are MAP inference and MPE inference. MAP queries

search for the most plausible instantiation of query variables Q given an evidence

e (an instantiation of a set of variables E) while MPE queries search for the most

plausible explanation of an evidence e. More formally,

MAP query: Let PN be a possibilistic graphical model over a set of variables V . Let

also Q⊂V be a subset of query variables and E⊂V be a subset of evidence variables

such that Q and E are disjoint subsets (namely, Q∩E=∅). Given an evidence E=e,

the objective is to compute the most plausible instantiation q of Q, namely MAP

queries aim to search for

argmax
q∈DQ

(ΠPN (q|⊗e)) (5)

where |⊗ is either min-based or product-based conditioning.

MPE query: Let PN be a possibilistic network over the set of variables V , E ⊂ V be

a set of evidence variables. We denote X the set of remaining variables (X = V \E).

Then, given an evidence E=e, MPE query compute the most plausible instantiation

x of X compatible with the evidence e. Namelyb:

argmax
x∈X

(ΠPN (x, e)). (6)

bNote that ΠPN (x, e) is the possibility degree of the conjunction of x and e, especially since
X ∩ E = ∅. Another notation commonly used is ΠPN (x ∧ e).
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In the case of a MAP query, the problem can be reduced to finding the most

plausible assignment of query variables Q compatible with the evidence e. More pre-

cisely, using the maxitivity property of possibility theory allows to rewrite Equation

(5) as follows:

argmax
q∈DQ

(ΠPN (q, e)). (7)

This is formally stated in the following proposition.

Proposition 4.1. Given a possibilistic network PN , a set of query variables Q and

an evidence e (instance of variables E), we have:

argmax
q∈DQ

(ΠPN (q|e)) = argmax
q∈DQ

(ΠPN (q, e)). (8)

for both min-based and product-based conditioning rules.

Proof.

• Let us start with the min-based conditioning. Given a possibilistic network

PNm over V and let Q and E be two subsets of V (s.t. Q ∩E = ∅). Then,

computing argmaxq∈DQ
(Π(q|e)) is equivalent to searching the instantia-

tion q such that Π(q|e) = 1. By definition of the min-based conditioning,

Π(q|e) = 1 if Π(q, e) = Π(e). Assume that argmaxq∈DQ
(Π(q, e)) is q′ then

since Π(e) = maxω�e π(ω) or said otherwise Π(e) = maxq∈DQ
Π(q, e) which

is given by Π(q′, e).

• Let us now consider product-based conditioning. In the same way, since the

possibilistic network PN ∗ is normalised then ∀e ∈ E, argmaxq∈DQ
(Π(q|e))

is equivalent to searching the instantiation q such that Π(q|e) = 1. Which,

by definition, is given by Π(q|e) =
Π(q, e)

Π(e)
, therefore, Π(q|e) = 1 if

Π(q, e) = Π(e). From there, assume that argmaxq∈DQ
(Π(q, e)) is q′ then

since Π(e) = maxω�e π(ω) = Π(q′, e). Thus, argmaxq∈DQ
(ΠPN (q|e)) =

argmaxq∈DQ
(ΠPN (q, e)).

Given this equivalence, we can focus only on the MAP problem redefined by

Equation (7).

5. General overview of the contribution

In order to analyse the computational complexity of inference in possibilistic net-

works, we provide first in this section, a reminder of the notions of boolean sat-

isfiability decision problems and a description of the different steps we will take,

to prove that MAP inference (resp. MPE inference) is NP -complete in possibilistic

networks. In particular, the analysis breaks down into showing the hardness and the



April 24, 2020 11:21 WSPC/INSTRUCTION FILE IJAIT-Special-issue-
ICTA18
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completeness of the decision problems associated to MAP and MPE queries. Let us

first denote each of these decision problems. More preciselyc,

• We denote by π⊗-D-MAP(PN⊗, Q, e, t) the decision problem associated

to a MAP query in a possibilistic network (i.e. π∗-D-MAP(PN ∗, Q, e, t)
in product-based possibilistic networks and πm-D-MAP(PNm, Q, e, t) in

min-based possibilistic networks)

• We denote by π⊗-D-MPE(PN⊗, e, t) the decision problem associated to

a MPE query in a possibilistic network (i.e. π∗-D-MPE(PN ∗, e, t) in

product-based possibilistic networks and πm-D-MPE(PNm, e, t) in min-

based possibilistic networks)

We will also refer to a special case of possibilistic networks involving only boolean

variables (for variable domains) and binary possibility degrees 0 or 1 (namely, each

conditional event is either fully possible or fully impossible). This type of belief

networks is called in this paper Boolean and Binary possibilistic networks and they

are denoted by B&B possibilistic networks. A joint B&B possibility distribution is

therefore a particular case of a general possibility distribution which is defined over

{0,1} rather than over then whole unit interval [0, 1]. Thus it keeps the same prop-

erties and the same definition of computations of conditioning and chain rules. The

following introduces notations associated with MAP and MPE decision problems

defined for B&B possibilistic networks:

• We denote by B&B⊗-D-MAP(PNB&B⊗ , Q, e) the decision problem asso-

ciated to MAP querying a binary and boolean possibilistic network.

• In the same way, we denote by B&B⊗-D-MPE(PNB&B⊗ , e) the decision

problem associated to MPE querying a binary and boolean possibilistic

network.

We recall that the operator ⊗ can be either the min or product operation.

To show hardness and completeness of MAP and MPE queries, we will provide

polynomial-time reductions from some known NP -complete problems to our MAP

decision problems (resp. MPE decision problems) and conversely.

5.1. A brief refresher on satisfiability problems

Let us start with recalling the basic notions of boolean satisfiability. We only focus

on formulas in conjunctive normal form since this is enough for the purpose of our

study. Let us assume a set of boolean variables V={X1, ..., Xn} and let us denote

by xi (resp. ¬xi) the positive literal (resp. the negative literal) of variable Xi. A

clause C is defined as a disjunction of literals. For example, a clause C could be:

x1 ∨ ¬x2.

cthese decision problems will be formally defined in relevant sections
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Definition 5.1. A conjunctive normal form formula (CNF) Ψ as a conjunction of

clauses.

The formula (x1 ∨ ¬x2) ∧ (x3 ∨ ¬x2) is an example of a CNF. A 3CNF is a

conjunctive normal form formula where each clause is a disjunction of at most 3

literals.

A CNF formula Ψ is said satisfiable or consistent if there exists an assignment

(also called interpretation) of all the variables that makes Ψ true. For CNF formulas,

the boolean satisfiability decision problem CNF-SAT, denoted by D-SAT, is stated

as follows:

Definition 5.2. We denote by D-SAT(Ψ) the decision problem associated to de-

ciding whether there exists an assignment of variable that satisfies Ψ. It is stated

by:

Input: The input is a formula Ψ given in a conjunctive normal form.

Question: The question is whether the formula Ψ is satisfiable ?

In the sequel, the D-3SAT decision problem is stated as follows :

Definition 5.3. We denote by D-3SAT(Ψ) the decision problem stated by:

Input: The input is a 3CNF formula, denoted by Ψ

Question: The question is whether the formula Ψ satisfiable ?

Example 5.1. Let us assume the set of variables V = {X1, X2, X3, X4} and the

following 3CNF Ψ on V :

(x1 ∨ ¬x2 ∨ x3) ∧
(¬x3 ∨ ¬x2 ∨ x4)

It is easy to check that Ψ is satisfiable. In fact, the assignment ω = x1, x2,¬x3,¬x4

satisfies all clauses and makes Ψ take the truth value True. Hence, the answer to

the decision problem D-SAT(Ψ) is ”yes”.

The other problem referred to in this paper is the weighted MaxSAT problem

which generalizes the SAT problem as follows : Given a formula with non-negative

integer weights for each clause, the task is to find an assignment of variables that

maximizes the sum of the weights of the satisfied clauses. We the define associated

decision problem for weighted MaxSAT as follows :

Definition 5.4. We denote by D-WMaxSAT(Ψ, k) the decision problem defined

by:

Inputs:

• Ψ: a weighted CNF formula over V = {X1, ..., Xn} represented by



April 24, 2020 11:21 WSPC/INSTRUCTION FILE IJAIT-Special-issue-
ICTA18

10 Salem Benferhat, Amélie Levray, Karim Tabia

Ψ =


(C1, α1),

(C2, α2),

...

(Cm, αm).


where C ′is are clauses and α′is are positive integers.

• k: a positive integer

Question: Is there an instantiation of variables V such that the sum of weights of

satisfied clauses in Ψ is greater or equal to k?

Example 5.2. Let us assume the following weighted CNF formula Ψ over V =

{X1, X2, X3, X4}:

Ψ =


(x1 ∨ ¬x2, 4),

(¬x1 ∨ x2, 6),

(¬x3 ∨ ¬x2 ∨ x4, 5),

(x5 ∨ x4 ∨ ¬x1, 2)


Let us assume k=10. The instantiation of the variables V ω = x1,¬x2, x3, x4 satisfies

all clauses except (¬x1 ∨ x2, 6). Hence
∑
{αi : (Ci, αi) ∈ Ψ s.t ω |= Ci} = 11 ≥ 10

where |= denotes the propositional logic satisfaction relation. Consequently, the

answer to the decision problem D-WMaxSAT(Ψ, 10) is ”yes”.

5.2. Steps of the solution

In the following, we provide the proof of the NP -completeness of π⊗-D-MAP and

π⊗-D-MPE decision problems. This is done through the following steps:

• We first show the NP -hardness of πm-D-MAP and π∗-D-MAP. We will

provide a reduction from the D-3SAT decision problem to both πm-D-

MAP and π∗-D-MAP decision problems. In this reduction, we use the

restricted version, B&B possibilistic networks, and we will provide inter-

mediary results and the reductions from the D-3SAT decision problem to

B&B⊗-D-MAP decision problem.

• We provide a reduction of the πm-D-MAP decision problem, defined for

min-based possibilistic networks, to the D-SAT decision problem (for com-

pleteness in min-based possibilistic networks).

• We provide the completeness of the proof by reducing the π∗-D-MAP

decision problem, defined for product-based possibilistic networks, to the

D-WMaxSAT decision problem.

This concludes the proof for MAP querying possibilistic networks. To tackle the

MPE querying of possibilistic networks, we will follow the same steps:
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• We show the NP -hardness of πm-D-MPE and π∗-D-MPE with a reduc-

tion from the D-3SAT decision problem to B&B⊗-D-MPE decision prob-

lem.

• We provide a reduction of the πm-D-MPE decision problem, defined for

min-based possibilistic networks, to the D-SAT decision problem (for com-

pleteness in min-based possibilistic networks).

• Lastly, we will focus on reducing the π∗-D-MPE decision problem, defined

for product-based possibilistic networks, to the D-WMaxSAT decision

problem (for completeness in product-based possibilistic networks).

6. Analysis of MAP querying a possibilistic network

In this section, we focus on proving that the decision problem behind MAP inference

in possibilistic networks is NP -complete. First, we propose, in Subsection 6.1, to

reduce the 3SAT decision problem to MAP querying B&B possibilistic networks.

This shows that the decision problem behind MAP is NP -hard. By proving, in

Subsections 6.2 and 6.3, that the decision problem associated to MAP inference is

also in NP, hence we prove that MAP inference is NP -complete.

6.1. From the 3SAT problem to the one of MAP querying in B&B

possibilistic networks

In this case, we face only two kinds of queries: Given an evidence e (instantiation

of variables E), the question is is there an instantiation q of query variables Q such

that ΠPN⊗(q ∧ e) ≥ 0 or such that ΠPN⊗(q ∧ e) ≥ 1 with ⊗=m (resp. ⊗=∗) for

min-based (resp. product-based) possibilistic setting ? The inequality ΠPN⊗(q∧e)≥0

is satisfied trivially since any instantiation q of Q is an answer to the query.

Therefor, we will only focus on studying the computational complexity of deci-

sion problems πm-D-MAP(PNB&Bm , Q, e, 1) and π∗-D-MAP(PNB&B∗ , Q, e, 1).

Example 6.1. We illustrate the decision problem π-D-MAP(PNB&B , Q, e, 1) on

the B&B possibilistic network of Figure 2 over the boolean variables V = {A,B,C}.

A

B C

A πB&B(A)
a 1
¬a 1

B A C πB&B(B|AC)
b a c 1
¬b a c 0
b a ¬c 1
¬b a ¬c 1

b ¬a c 1
¬b ¬a c 0
b ¬a ¬c 0
¬b ¬a ¬c 1

C πB&B(C)
c 1
¬c 0

Fig. 2. Example of a Boolean and Binary possibilistic network.
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Let Q = {B} be the set of query variables and E = {C} be the set of evidence

variables. Assume that e = c, then one can check that the answer to the question:

is there an instantiation q of B such that ΠPNB&B
(q ∧ c) = 1? is ”yes”. Indeed, we

have ΠPNB&B
(bc) = 1 and this is valid independently if we consider the min-based

chain rule or the product-based chain rule.

6.1.1. Equivalence between the MAP decision problem in min-based B&B

networks and product-based B&B networks

Given the definition of a B&B possibilistic network, Proposition 6.1

states that the decision problems π∗-D-MAP(PNB&Bm , Q, e, 1) and π∗-D-

MAP(PNB&B∗ , Q, e, 1) are equivalent.

Proposition 6.1. Let e be an evidence and Q be a subset of query variables. Let

also PNB&Bm
and PNB&B∗ be two B&B possibilistic networks where ∀Xi, ∀µ an

instance of parents of Xi, πPNB&Bm
(Xi|µ) = πPNB&B∗

(Xi|µ). Then the answer to

the question πm-D-MAP(PNB&Bm
, Q, e, 1) is ”yes” iff the answer to the question

π∗-D-MAP(PNB&B∗ , Q, e, 1) is ”yes”.

Following Proposition 6.1, the answer to a MAP query in a B&B possibilistic

network does not depend on whether we are considering the min-based version of

B&B possibilistic networks or the product-based one. The proof of Proposition 6.1

is straightforward and it is based on the fact that operators ∗ and min when only

applied to possibility degrees 0 and 1 lead to the same results. Hence, when one

uses only binary degrees {0, 1}, then the joint possibility distributions associated

with PNm and PN ∗ are equal. Namely:

Proposition 6.2. Let PNB&Bm and PNB&B∗ be two B&B possibilistic networks

such that ∀Xi, ∀µ an instance of parents of Xi, πPNB&Bm
(Xi|µ) = πPNB&B∗

(Xi|µ).

Then we have:

∀ω ∈ Ω, πPNB&Bm
(ω) = πPNB&B∗

(ω). (9)

The proof of Proposition 6.2 is also straightforward and it directly follows from the

fact that if a and b are either equal to 0 or 1 then min(a, b) = a ∗ b. Consequently,

the use of min-based chain rule or product-based chain rule leads to same results.

6.1.2. Definition of the B&B network associated to a 3CNF

We can now start addressing the reduction from the 3SAT problem to querying

B&B possibilistic networks. As we have already showed that MAP querying B&B

networks is the same in min-based or in product-based B&B ones, we can assume in

this section the decision problem in the general case, denoted by B&B-D-MAP.

Since ΠPN (q ∧ e) ≥ 1 is equivalent to ΠPN (q ∧ e) = 1 then there is no need to

specify the threshold t. We get the following definition :
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Definition 6.1. We denote by B&B-D-MAP(PNB&B , Q, e) the decision problem

associated with MAP querying a B&B possibilistic network that we define as follows:

Inputs: The input of this decision problem has three elements :

• PNB&B : a B&B possibilistic network over V={X1, ..., Xn}
• e (evidence): an instantiation of a set of evidence variables E

• Q (query): a set of query variables such that Q∩E=∅

Question: Is there an instantiation q of variables Q such that ΠPNB&B
(q ∧ e)=1?

The first thing we provide is the B&B possibilistic network associated to a given

3CNF formula Ψ. Our reduction is inspired from the reduction provided in [27]

to show the NP-hardness of probabilistic inference in belief networks. The B&B

network associated to a given 3CNF formula is given in Definition .

Definition 6.2. Let Ψ = C1∧C2∧...∧Cm be a 3CNF formula. Let V = {X1, ..., Xn}
be the set of propositional variables appearing in Ψ. The B&B possibilistic network

associated with Ψ, denoted by PNΨ is defined as follows:

(1) Representing propositional variables: For each propositional symbol Xi

involved in Ψ, we create a rooted boolean node variable, also and simply denoted

by Xi, in the graph (with two values xi and ¬xi). Each rooted variable Xi is

associated with the local uniform possibility distribution : πPNΨ
(xi)=1 and

πPNΨ
(¬xi)=1.

(2) Encoding the satisfaction of a clause Cj : For each clause Cj of Ψ, we

introduce a conditional node variable, denoted Cj . Cj is a boolean variable

whose two values are denoted cj and ¬cj . The parents of Cj are the rooted

variables Xi that are involved in Cj . Each conditional node Cj is associated

with a conditional possibility distribution given by: ∀ujk an instance of parents

of Cj :

πPNΨ(cj |ujk) =

{
1, if ujk |= Cj ,

0, otherwise.

πPNΨ
(¬cj |ujk) =

{
0, if ujk |= Cj ,

1, otherwise.

where ujk is an instantiation of node Cj ’s parents, namely the instantiation of

variables Xi involved in Cj and uk|=Cj means that the instantiation uk satisfies

the clause Cj .

(3) Encoding the satisfaction of the 3CNF formula Ψ: At the end, we in-

troduce a single boolean node denoted EΨ to represent the satisfiability of the

whole formula Ψ. Its values are denoted eΨ and ¬eΨ and it has all nodes C ′js as

parents. The conditional possibility distributions associated with EΨ are given

as follows :

πPNΨ(eΨ|C1 ∧ .. ∧ Cm) =

{
1, if ∀Cj , Cj = cj ,

0, otherwise (∃j∈{1..m} s.t. Cj=¬cj)



April 24, 2020 11:21 WSPC/INSTRUCTION FILE IJAIT-Special-issue-
ICTA18

14 Salem Benferhat, Amélie Levray, Karim Tabia

πPNΨ
(¬eΨ|C1 ∧ .. ∧ Cm) =

{
0, if ∀Cj , Cj = cj ,

1, otherwise

Note that reducing from 3SAT clauses to a B&B possibilistic network given by

Definition 6.2 is done in polynomial time. The space complexity is also polynomial

with respect to the size of the input formula Ψ.

Example 6.2. Let us consider the 3CNF Ψ of Example 5.1.

According to Definition 6.2, the B&B possibilistic network PNΨ associated to

Ψ involves three levels of nodes where the first level represents the set of variables.

In this example, we have the first level involving the nodes X1, X2, X3 and X4 as

shown on Figure 3.

X1 X2 X3 X4

X1

x1 1
¬x1 1

X2

x2 1
¬x2 1

X3

x3 1
¬x3 1

X4

x4 1
¬x4 1

Fig. 3. First level of nodes in PNΨ.

The second level of nodes contains 2 nodes C1 and C2 with local distributions as

depicted on Figure 4. Note that in Figures 4 and 5, the entries of local distributions

denoted by represent the remaining instantiations of par(Cj) and par(EΨ).

X1 X2 X3 X4

C1 C2

C1 X1X2X3

c1 ¬x1x2¬x3 0
c1 1
¬c1 ¬x1x2¬x3 1
¬c1 0

C2 X2X3X4

c2 1
c2 x2x3¬x4 0
¬c2 0
¬c2 x2x3¬x4 1

Fig. 4. First two levels of nodes Xi and Cj in PNΨ.

When introducing the final node EΨ representing the whole 3CNF formula, we

obtain the final binary possibilistic network of Figure 5.
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X1 X2 X3 X4

C1 C2

EΨ

EΨ C1C2

eΨ c1c2 1

eΨ 0
¬eΨ c1c2 0

¬eΨ 1

Fig. 5. B&B network PNΨ obtained from the 3CNF formula Ψ given in Example 5.1.

6.1.3. Reduction from the 3SAT problem to the B&B-D-MAP problem

Theorem 6.1 gives the reduction from the decision problem D-3SAT(Ψ) into

B&Bm-D-MAP(PNΨ, Q, e). The input e is let to eΨ while Q is set to the re-

maining variables in PNΨ (namely, ({X1, ..., Xn} ∪ {C1, ..., Cm}) \ {EΨ}).

Theorem 6.1. Let Ψ be a 3CNF formula. Let also PNΨ be the B&B net-

work given by Definition 6.2. Let VPNΨ
be the set of variables in PNΨ, namely

{X1, ..., Xn}∪ {C1, ..., Cm}∪ {EΨ}. Then, D-3SAT(Ψ) answer is ”yes” if and only

if the B&Bm-D-MAP(PNΨ, (VPNΨ
\{EΨ}), eΨ) answers ”yes” where D-3SAT is

given in Definition 5.3 and B&Bm-D-MAP is given by Definition 6.1.

Proof.

− Let us first assume that the answer to D-3SAT(Ψ) is ”yes”, meaning that there

exists an instantiation of the variables {X1, ..., Xn}, denote by ω∗, satisfying all the

clauses in Ψ. If ω is an interpretation and X is a variable then we simply denote by

ω[X] the instance of X present in ω.

Let us build an interpretation, denoted ωPNΨ
, of VPNΨ

such that ωPNΨ
|= eΨ

and πPNΨ
(ωPNΨ

) = 1. For the variable EΨ, we let ωPNΨ
[EΨ] = eΨ. For variables

Xi ∈ {X1, ..., Xn} we let ωPNΨ [Xi] = ω∗[Xi]. For variables Cj ∈ {C1, ..., Cm} we

simply let ωPNΨ
[Cj ] = cj . Now, let us show that indeed πPNΨ

(ωPNΨ
) = 1.

Recall that for all the variables Xi in PNΨ, we have πPNΨ(Xi) = 1. Since ω∗

satisfies all the clauses, then for all variables Cj in PNΨ (namely, the set of nodes

representing the clauses), we have πPNΨ(cj |ujk) = 1 where ω∗ |= ujk. Lastly, the

variable EΨ = eΨ when all C ′js are set to c′js respectively have a possibility degree

of 1 (πPNΨ
(eΨ|c1 ∧ ... ∧ cm) = 1).
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Therefore, using the min-based chain rule, we have

πPNΨ
(ωPNΨ

) = min{πPNΨ
(eΨ|c1 ∧ ... ∧ cm),

minj=1,...,m,ωPNΨ
|=ucj

πPNΨ
(cj |ucj ),

mini=1,...,n,ωPNΨ
|=Xi

πPNΨ(Xi))}
= 1

where ucj is the instance parents of Cj such that ωPNΨ |= ucj . Therefore, defining

q as the instantiation of Q satisfied by ωPNΨ
we have ΠPNΨ

(q ∧ eΨ) = 1, hence

B&Bm-D-MAP(PNΨ, (VPNΨ
\ {EΨ}), eΨ) is ”yes”.

− Let us assume that the answer to D-3SAT(Ψ) is ”no”. Hence, whatever the

considered interpretation ωPNΨ where ωPNΨ |= eΨ there exists at least Cj such

that πPNΨ
(cj |ucj ) = 0 with ωPNΨ

|= ucj . Hence, πPNΨ
(ωPNΨ

) = 0. So using the

min operator of the chain rule, we obtain that ΠPNΨ(q∧eΨ) = 0 for all instantiation

q of Q. Hence, B&Bm-D-MAP(PNΨ, (VPNΨ
\ {EΨ}), eΨ) is ”no”.

By this reduction we have shown that MAP querying possibilistic network is NP -

hard. In addition to this proof, we provide the completeness of πm-D-MAP and

π∗-D-MAP. One can either show their membership to NP or provide reductions

from πm-D-MAP and π∗-D-MAP to SAT and WMAXSAT decision problems. In

the following, we adopt the second option. Indeed, the proposed reductions can be

used as useful transformations for implementation of MAP queries in possibilistic

networks using SAT solvers.

6.2. Reduction from MAP querying min-based possibilistic

networks to the SAT problem

In this subsection, we do not restrict ourselves to binary possibility distributions.

Namely, possibility degrees can take values in the unit interval [0, 1]. However, for

the sake of simplicity, we still only deal boolean variables. This is not a restriction

since the proof can easily be extended by encoding a non-boolean variable by a

set of boolean variables. We reduce here the decision problem πm-D-MAP to the

decision problem D-SAT.

It is time now to formally define the decision problem associated to a MAP query

in min-based possibilistic networks, denoted πm-D-MAP.

Definition 6.3. By πm-D-MAP(PNm, Q, e, t) we denote the decision problem

associated with MAP querying min-based possibilistic networks that we define by:

Input: The input of this decision problem is composed of four elements :

• PNm: a min-based possibilistic network

• e (evidence): an instantiation of a set of variables E

• Q (query): a set of variables with Q ∩ E = ∅
• t: a real number in (0, 1].
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Question: Is there an instantiation q of non observed variables Q such that ΠPNm
(q∧

e) ≥ t?

6.2.1. Definition of a CNF formula associated with a min-based possibilistic

network

We now define the reduction from a min-based possibilistic network PNm into a

CNF formula, denoted ΨPNm,Q,e,t. Definition 6.4 specifies the CNF formula asso-

ciated to the network PNm, the set of query variables Q, the evidence e and the

positive real number t in ΨPNm,Q,e,t.

Definition 6.4. Let PNm be a min-based possibilistic network over the set of

boolean variables V={X1, ..., Xn}. Let Q be a subset of V , e = e1, ..., el be an

instantiation of evidence variables E (with Q ∩ E = ∅) and let t be a threshold.

Then ΨPNm,Q,e,t over the same set of boolean variables V = {X1, ..., Xn}, is given

by:

ΨPNm,Q,e,t = {(¬xi ∨ ¬uij) : πPNm(xi|uij) < t}
∪ {ek : k = 1, ..., l}

It is obvious that this reduction is achieved in polynomial time and space with

respect to the size of PNm.

Example 6.3. Let us use the possibilistic network PNm of Figure 1 over the

variables V = {A,B,C,D}. Let the set of evidence variables be E={D} and let

e = {D = d} be an instantiation of E, Q={B,C} be the query variables and t = .5.

Using the transformation of Definition 6.4, we obtain the CNF ΨPNm,{B,C},d,.5 given

in the following :

ΨPNm,{B,C},d,.5 =


(c ∨ b) ∧

(d ∨ ¬b) ∧
(¬d ∨ b) ∧

(¬b ∨ ¬a) ∧
d


6.2.2. Reduction from a min-based possibilistic network into a CNF

Theorem 6.2 states that any πm-D-MAP can be reduced to D-SAT.

Theorem 6.2. Let PNm be a min-based possibilistic network, Q be the query

variables, e be the evidence (an instantiation of variables E) and t be a real num-

ber in the interval (0, 1]. Let ΨPNm,Q,e,t be the CNF formula given by Definition

6.4. Then, the answer to πm-D-MAP(PNm, Q, e, t) is ”yes” iff the answer to D-

SAT(ΨPNm,Q,e,t) is also ”yes” where πm-D-MAP is given by Definition 6.3 and

D-SAT is given by Definition 5.2.
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Proof.

− Let us assume that ΨPNm,Q,e,t is satisfiable. This means that there exists an

instantiation of all variables, denoted by ω∗, that satisfies all clauses of ΨPNm,Q,e,t

including e = e1, ..., el. Recall that by construction of ΨPNm,Q,e,t, if (¬xi ∨ ¬uij) ∈
ΨPNm,Q,e,t then we have πPNm

(xi|uij) < t. So if ω∗ satisfies all clauses in ΨPNm,Q,e,t

then ω∗ falsifies each of the formulas in {(xi∧uij) : (¬xi∨¬uij) ∈ ΨPNm,Q,e,t}. This

means that all conditionals πPNm
(xi|uij) used in chain rule for defining πPNm

(ω∗)

have a possibility degree greater or equal to t.Hence, their minimal is also greater

or equal to t. Therefore, using the min-based chain rule we get πPNm
(ω∗) ≥ t.

Denoting now q = ω∗[Q] the instantiation of the variables Q such that ω∗ � q,
we have ΠPNm

(q∧e) ≥ t since πPNm
(ω∗) ≥ t, ω∗ |= q and ω∗ � e. Hence the answer

to πm-D-MAP(PNm, Q, e, t) is also ”yes”.

− Assume that ΨPNm,Q,e,t is unsatisfiable. Then for all instantiation of variables ω

such that ω |= e(= e1 ∧ ..∧ el), there exists at least a clause Ci = ¬xi ∨¬uij that is

falsified by ω (and hence ω |= xi∧uij). Now by construction of ΨPNm,Q,e,t, we have

πPNm(xi|uij) < t, so using the min-based chain rule we have ∀ω |= e, πPNm(ω) < t

and therefore ∀q ∈ DQ, ΠPNm
(q ∧ e) < t.

Let us illustrate the above theorem with a MAP query.

Example 6.4. Let us assume the CNF formula ΨPNm,{B,C},d,.5, of Example 6.3,

corresponding to the MAP query:

Is there an instantiation q of query variables {B,C} such that ΠPNm(q∧e) ≥
.5?

Namely, the decision problem is πm-D-MAP(PNm, {B,C}, d, .5). There exist two

models ¬abcd and ¬ab¬cd. Hence, the answer to D-SAT(ΨPNm,Q,e,t) is ”yes”.

Finally, using the min-based chain rule on the network of Figure 1, one obtains

π(¬abcd) = .6; hence ΠPNm
(bcd) = .6 which is higher or equal than .5. Then the

answer to πm-D-MAP(PNm, {B,C}, d, .5) is ”yes”.

This proves that MAP querying a min-based possibilistic network is NP -

complete. Let us now address the product-based possibilistic setting by providing

a reduction from the decision problem π∗-D-MAP to the decision problem D-

WMaxSAT, given by Definition 5.4.

6.3. From MAP querying product-based possibilistic networks to

WMaxSAT

In this section, we will consider that the possibility degrees in the possibilistic

networks are of the form 2−αi (plus 0 and 1) where αi’s are positive integers.

Having uncertainty degrees of the form 2−αi will allow us to easily reduce PN ∗
to WMaxSAT given the fact that the weights used in WMaxSAT are integers (it
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is enough to use − log2(2−αi) to get positive integers). This assumption is done

again for the sake of clarity but the proof can be generalized to other real numbers

between 0 and 1. Note that αi may represent a degree of surprise used in Spohn’s

ordinal conditional function [28].

Before giving the definition of the transformation, we formally define the decision

problem associated to MAP querying a product-based possibilistic network π∗-D-

MAP.

Definition 6.5. By π∗-D-MAP(PN ∗, Q, e, t) we denote the decision problem as-

sociated with MAP querying product-based possibilistic networks that we define

by:

Input: The input of this decision problem is composed of four elements :

• PN ∗: a product-based possibilistic network

• e (evidence): an instantiation of a set of variables E

• Q (query): a set of variables with Q ∩ E = ∅
• t: a real number in (0, 1].

Question: Is there an instantiation q of non observed variables Q such that ΠPN∗(q∧
e) ≥ t?

6.3.1. Definition of a weighted CNF formula associated to a product-based

possibilistic network

In the following definition, we give the weighted CNF formula associated with a

MAP query in product-based possibilistic networks. More precisely, it takes into

account the evidence e = e1, ..., el of the set of variables E (of size |E| = l), the set

of query variables Q and the threshold t to produce the associated weighted CNF

formula.

Definition 6.6. Let PN ∗ be a product-based possibilistic network over the set of

boolean variables V = {X1, ..., Xn}. Let Q be a subset of V , e = e1, ..., el be an

instantiation of evidence variables E (with Q ∩ E = ∅) and t be a threshold. Then

ΨPN∗,Q,e,t is defined by: ΨR ∪Ψ0 ∪Ψe where

ΨR = {(¬xi ∨ ¬uij , αi) : πPN∗(xi|uij) = 2−αi},
Ψ0 = {(¬xi ∨ ¬uij ,M) : πPN∗(xi|uij) = 0},
Ψe = {(ek,M) : k = 1, ..., l},

(10)

where M is a positive number such that M >
∑
{αi : (¬xi ∨ ¬uij , αi) ∈ ΨR}.

ΨR represents the clauses in ΨPN∗,Q,e,t such that have possibility degrees of the

form 2−αi . Ψ0 represents the clauses for which the possibility degrees in PN ∗ are 0.

The information Ψe represents the clauses added to enforce the evidence. Intuitively,

the integer weight M is used for fully certain pieces of information. Besides, Ψ0∧Ψe

is of course assumed to be consistent (this reflects the very reasonable assumption

that the evidence is somewhat possible).
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For the following, we will also denote by X =
∑
{αi : (¬xi ∨ ¬uij , αi) ∈ ΨR}

the sum of weights in ΨR.

Example 6.5 illustrates Definition 6.6.

Example 6.5. Let us consider the product-based possibilistic network PN ∗ of

Figure 6. Let Q = {B} be a subset of V , let e = ¬c be an instantiation of evidence

variables E = {C} and let t = 2−2 be the threshold.

A B

C

A πPN∗ (A)

a 1

¬a 2−4

B πPN∗ (B)

b 2−8

¬b 1

C A B πPN∗ (C|AB)

c a b 2−7

¬c a b 1

c a ¬b 1

¬c a ¬b 2−2

c ¬a b 0

¬c ¬a b 1

c ¬a ¬b 0
¬c ¬a ¬b 1

Fig. 6. Example of a product-based possibilistic network PN ∗ over A,B and C.

Let M = 30. Then following Definition 6.6, the weighted CNF formula

ΨPN∗,{B},¬c,2−2 is

ΨPN∗,{B},¬c,2−2 =



(a, 4),

(¬b, 8),

(¬c ∨ ¬a ∨ ¬b, 7),

(c ∨ ¬a ∨ b, 2),

ΨR

(¬c ∨ a ∨ b, 30),

(¬c ∨ a ∨ ¬b, 30),

}
Ψ0

(¬c, 30)
}

Ψe


6.3.2. Reduction from a product-based possibilistic network to a weighted

CNF formula

Theorem 6.3 provides the reduction from the decision problem π∗-D-

MAP(PN ∗, Q, e, t) into D-WMaxSAT (ΨPN∗,Q,e,t, k). We will denote by Z the

number of possibility degrees, πPN∗(xi|uij) in PN ∗ that are equal to 0 (namely, Z

is the number of clauses in Ψ0).

The input k is let to X+ log2 t+M ∗ (Z+ |E|) while ΨPN∗,Q,e,t is the weighted

CNF formula given associated to PN ∗ given by Definition 6.6 (we also assume for

only sake of simplicity that t is of the form 2−α with α an integer). More formally:
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Theorem 6.3. Let PN ∗ be a product-based possibilistic network. LetQ be a subset

of V , e be an instantiation of variables E and t be a threshold. Let ΨPN∗,Q,e,t be

the CNF formula given by Definition 6.6. Then, π∗-D-MAP(PN ∗, Q, e, t) answers

”yes” if and only if D-WMaxSAT(ΨPN∗,Q,e,t, X+log2 t+M ∗ (Z+ |E|)) answers

”yes” where π∗-D-MAP is given by Definition 6.3 and D-WMaxSAT is given by

Definition 5.4.

Proof. Let us first recall the parameters of the WMaxSAT decision problem, D-

WMaxSAT(ΨPN∗,Q,e,t, k). Namely,

• ΨPN∗,Q,e,t is the weighted CNF formula given by Definition 6.6.

• k is the threshold for the problem and it is given by:

k = X + log2 t+M ∗ ((
∑

ΠPN∗(xi|ui) = 0) + 1) (11)

where M is defined in Definition 6.6. The value of X is defined by the sum of

weights in ΨR: X =
∑
{αi : (¬xi ∨ ¬uij , αi) ∈ ΨR} .

Recall that π∗-D-MAP decision problem is: Given an instantiation e of evidence

variables, is there an instantiation q of query variables Q such that Π(q, e) ≥ t?
Let us now show that the two decision problems π∗-D-MAP(PN ∗, Q, e, t) and

D-WMaxSAT(ΨPN∗,Q,e,t, X+log2 t+M ∗(Z+|E|)) are equivalent. Let the query

associated to D-WMaxSAT be: Does D-WMaxSAT(ΨPN∗,Q,e,t, X+log2 t+M ∗
(Z+ 1)) answer ”yes”? More precisely, is there an instantiation of all variables that

satisfies a subset of clauses in ΨPN∗,Q,e,t having the sum of the degrees of the

satisfied clauses greater or equal to k?

For the sake of clarity, in this proof, we simply write Ψ instead of ΨPN∗,Q,e,t.

? Assume that D-WMaxSAT(Ψ, k) answers ”yes”. This means that there exists

a subset A ⊆ Ψ such that:

• {(φi, αi) ∈ A} is consistent and

•
∑

(φi,αi)∈A αi ≥ k

Note that we can state that {(ek,M) : k = 1, ..., l} is included in A. Indeed, if

some (φi,M) of Ψ is not in A then (
∑

(φi,αi)∈A αi) cannot be greater than M ∗ (Z+

|E|). Let us denote by A∗ = A \ {(φi,M) : (φi,M) ∈ A} then we can also state

that:

• {(φi, αi) ∈ A∗} is consistent,

•
∑

(φi,αi)∈A∗ αi ≥ X + log2 t

Let ω be a model of {φi : (φi, αi) ∈ A} and {φi : (φi, αi) ∈ A∗}. Since X =
∑
{αi :

(φi, αi) ∈ Ψ and αi 6= M}. Then the latter equation implies that:∑
{αi : (φi, αi) 6∈ A∗} ≤ − log2 t

This can be rewritten as:∑
{αi : (φi, αi) ∈ Ψ \A, ω 2 φi} ≤ − log2 t
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It is sufficient now to consider the following simplified inequalities to have the wanted

result. ∑
{αi : (φi, αi) ∈ Ψ \A, ω 2 φi} ≤ − log2 t

−
∑
{log2 2−αi : (φi, αi) ∈ Ψ \A, ω 2 φi} ≤ − log2 t

− log2(∗{2−αi : (φi, αi) ∈ Ψ \A, ω 2 φi}) ≤ − log2 t

− log2(∗{2−αi : ω 2 ¬xi ∨ ¬uij}) ≤ − log2 t

− log2(∗{2−αi : ω � xi ∧ uij}) ≤ − log2 t

− log2 πPN∗(ω) ≤ − log2 t

πPN∗(ω) ≥ t

with ω � e. Hence the answer to π∗-D-MAP(PN ∗, Q, e, t) is also ”yes” by taking

q such that ω |= q.

? Assume that D-WMaxSAT(ΨPN∗,Q,e,t, k) answers ”no”. Then, for all consistent

subset of clauses A that include Ψ0 and Ψe we have∑
{αi : (φi, αi) ∈ A} < k.

Let us consider such a subset A∗. Let ω be a model of A∗, then following the same

previous steps we have:∑
{αi : (φi, αi) ∈ Ψ \A∗ s.t ω 2 φi} > − log2 t

− log2(∗{2−αi : ω 2 ¬xi ∨ ¬uij}) > − log2 t

− log2(∗{2−αi : ω � xi ∧ uij}) > − log2 t

− log2 πPN∗(ω) > − log2 t

πPN∗(ω) < t

with ω � e. Hence the answer to π∗-D-MAP(PN ∗, Q, e, t) is also ”no”.

The next example illustrates Theorem 6.3.

Example 6.6. Let us follow Example 6.5. Let Q = {B} and E = {C} be the

query variables and evidence variables respectively. Assume the evidence e = ¬c.
Let ΨPN∗,Q,e,t be the weighted CNF formula associated to PN ∗ given by Definition

6.6. The MAP query over PN ∗ is:

Is there an instantiation q of the variables Q such that ΠPN∗(q, e) ≥ 2−2?

Hence, the corresponding problem D-WMaxSAT(ΨPN∗,Q,e,t, k) is given by:

Is there an instantiation of the variables such that the sum of the degrees

of the satisfied clauses is greater or equal to k?

Let us set the values of the variables X,M and Z: X = 21, M = 30, and

Z = 2. Then, k = X + log2 t + 30 ∗ (Z + 1) = 109. Given this configuration, D-

WMaxSAT(ΨPN∗,{B},¬c,2−2 , 109) answers ”yes”. Indeed, it is enough to consider

A such that
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A =



(a, 4),

(¬b, 8),

(¬c ∨ ¬a ∨ ¬b, 7),

(¬c ∨ a ∨ b, 30),

(¬c ∨ a ∨ ¬b, 30),

(¬c, 30)


The sum of the weights in A is equal to 109. A model of formulas in A can be

a¬b¬c for which using the product-based chain rule has a possibility degree of

ΠPN∗(a¬bc) = 2−2. Hence, π∗-D-MAP(PN ∗, {B},¬c, 2−2) answers ”yes” as well.

In this section, we have shown that the complexity of MAP inference in possi-

bilistic networks is NP -complete. We have also provided the transformations that

encode a possibilistic network into a satisfiability problem in order to use the power

of SAT solvers. These results are significant as it overrides the complexity for the

same queries in Bayesian networks. In the next section, we provide, following the

same hypothesis the proof of hardness and completeness for MPE query in possi-

bilistic networks.

7. Analysis of MPE querying a possibilistic network

This section briefly focuses on MPE query in possibilistic networks where we will

follow the same steps as for showing the computational complexity of MAP querying.

7.1. From 3SAT to MPE querying over B&B possibilistic networks

In the previous section, we have shown that MAP querying a min-based B&B possi-

bilistic network and MAP querying a product-based B&B possibilistic network give

the same result. This results is also valid for a MPE query as shown below.

Proposition 7.1. Let e be an instantiation of evidence variables. Let PNB&Bm

and PNB&B∗ be two B&B possibilistic networks such that ∀Xi, ∀µ an in-

stance of parents of Xi, πPNB&Bm
(Xi|µ) = πPNB&B∗

(Xi|µ). Then the answer

to πm-D-MPE(PNB&Bm
, e, 1) is ”yes” if and only if the answer to π∗-D-

MPE(PNB&B∗ , e, 1) is ”yes”.

Proof. Assume that πm-D-MPE(PNB&Bm
, e, 1) is ”yes”. This means that there

exists an interpretation ω such that πm(ω) = 1 and for all conditionals, involved

in the computation of πm(ω), πm(xi|par(xi)) = 1. By definition of PNB&B∗ , we

have π∗(xi|par(xi)) = 1 and using the product-based chain rule, we obtain that

π∗(ω) = 1 so π∗-D-MPE(PNB&B∗ , e, 1) is ”yes”. The same reasoning can be used

to prove the ‘only if’ condition.
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7.1.1. Reduction from 3SAT problem to B&B-D-MPE problem

In the previous sections, we gave the transformation definition of a 3CNF to a B&B

possibilistic network in the context of a MAP query. In the following, we provide

the same definition for a MPE query. We first formally define the B&B-D-MPE

problem.

Definition 7.1. By B&B-D-MPE(PNB&B , e) we denote the decision problem

associated with MPE querying a Boolean and Binary possibilistic network that we

define by:

Input: The input of this decision problem is composed of two elements :

• PNB&Bm
: a B&B possibilistic network over V = {X1, ..., Xn} (min-based or

product-based)

• e (evidence): an instantiation of a set of observation variables E

Question: Is there an instantiation x of variables X such that ΠPNB&B
(x, e) = 1?

As for MAP inference, we build a B&B possibilistic network from a 3CNF. Def-

inition 6.2 given for the MAP inference in the previous section can be reused to

transform the 3CNF into a B&B possibilistic network. Indeed, the difference be-

tween MAP and MPE inference in B&B possibilistic network lies in the presence of

a subset of query variables. The set of variables Q is not used in the definition of

the transformation.

Theorem 7.1 provides the reduction from the decision problem D-3SAT(Ψ) into

B&B-D-MPE(PNΨ, e) where the input e is let to eΨ. More formally:

Theorem 7.1. Let Ψ be a 3CNF formula. Let PNΨ be the B&B possibilistic

network given by Definition 6.2. Let VPNΨ
be the set of variables in PNΨ, namely

{X1, ..., Xn}∪{C1, ..., Cm}∪{EΨ}. Then, D-3SAT(Ψ) answer is ”yes” if and only if

the B&B-D-MPE(PNΨ, eΨ) answers ”yes” where D-3SAT is given in Definition

5.3 and B&B-D-MPE is given by Definition 7.1.

The proof of Theorem 7.1 is the same as the proof of Theorem 6.1. It is even

shorter as we don’t have to restrict the model instantiation to the variables in Q.

Note that it is clear that MAP is a generalization of MPE where, in MPE, Q is

set to the remaining variables not used in E. This explains why it is easier in this

second part to prove that MPE queries in possibilistic networks are NP -complete.

7.2. From MPE querying a min-based possibilistic network to SAT

The decision problem associated with a MPE query in min-based possibilistic net-

works, denoted πm-D-MPE is defined by:
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Definition 7.2. We denote πm-D-MPE(PNm, e, t) the decision problem associ-

ated with MPE querying a min-based possibilistic network. It is defined by:

Input: The input of this decision problem is composed of three elements :

• PNm: a min-based possibilistic network

• e (evidence): an instantiation of a set of variables E

• t: a real number in (0, 1].

Question: Is there an instantiation x of the variables X such that ΠPNm
(x, e) ≥ t?

The definition of ΨPNm,e,t, the CNF formula associated to a min-based pos-

sibilistic network for the MPE query with evidence e and threshold t is given by

Ψ′PNm,∅,e,t where Ψ′ is given by definition 6.4.

The following theorem states that πm-D-MPE can be reduced to D-SAT.

Theorem 7.2. Let PNm be a min-based possibilistic network, e be an instantiation

of evidence variables E and t be a real number in (0, 1]. Let ΨPNm,e,t be the CNF

formula given by Definition 6.4 with Q = ∅. Then, πm-D-MPE(PNm, e, t) says

”yes” if and only if D-SAT(ΨPNm,e,t) says ”yes” where πm-D-MPE is given by

Definition 7.2 and D-SAT is given by Definition 5.2.

Proof. We need to prove that when ΨPNm,e,t is satisfiable then ΠPNm(x, e) ≥ t

and that when ΨPNm,e,t is unsatisfiable then ΠPNm
(x, e) < t for all assignments of

all variables compatible with e.

• Assume that ΨPNm,e,t is satisfiable. This means that there exists an instan-

tiation of all variables, denoted by ω∗, that satisfies all clauses of ΨPNm,e,t

including e = e1, ..., el. Then we have πPNm(xi|uij) < t by construction of

ΨPNm,e,t. So if ω∗ satisfies all clauses in ΨPNm,e,t then ω∗ falsifies each of

the formulas in {(xi ∧ uij) : (¬xi ∨ ¬uij) ∈ ΨPNm,e,t}. Thus, all conditionals

πPNm
(xi|uij) applied in chain rule to compute πPNm

(ω∗) have a possibility

degree greater or equal to t. Therefore, πPNm
(ω∗) ≥ t. Hence the answer to

πm-D-MPE(PNm, e, t) is also ”yes”.

• Assume that ΨPNm,e,t is unsatisfiable. Then for all instantiation of variables ω

such that ω |= e(= e1∧ ..∧el), there exists at least a clause Ci = ¬xi∨¬uij that

is falsified by ω (and hence ω |= xi ∧ uij). Again by construction of ΨPNm,e,t,

we have πPNm(xi|uij) < t, so using the min-based chain rule we have ∀ω |= e,

πPNm
(ω) < t. Hence πm-D-MPE(PNm, e, t) is also ”no”.

7.3. From MPE querying a product-based possibilistic network to

WMaxSAT

The decision problem associated with a MPE query in product-based possibilistic

networks, denoted π∗-D-MPE is defined by:

Definition 7.3. We denote π∗-D-MPE(PN ∗, e, t) the decision problem associated

with MPE querying a product-based possibilistic network. It is defined by:
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Input: The input of this decision problem is composed of three elements :

• PN ∗: a product-based possibilistic network

• e (evidence): an instantiation of a set of variables E

• t: a real number in (0, 1].

Question: Is there an instantiation x of the variables X such that ΠPN∗(x, e) ≥ t?

The definition of ΨPN∗,e,t, the CNF formula associated to a product-based pos-

sibilistic network for the MPE query with evidence e and threshold t is given by

Ψ′PN∗,∅,e,t where Ψ′ is given by definition 6.6.

Theorem 7.3 provides the reduction from the decision problem π∗-D-

MPE(PN ∗, e, t) into D-WMaxSAT (ΨPN∗,e,t, k). We denote (in the same way

as for the MAP analysis) by Z the number of possibility degrees, πPN∗(xi|uij) in

PN ∗ that are equal to 0.

The input k is let to X + log2 t+M ∗ (Z + |E|) while ΨPN∗,e,t is the weighted

CNF formula given associated to PN ∗ given by Definition 6.6 where Q is let to the

empty set. More formally:

Theorem 7.3. Let PN ∗ be a product-based possibilistic network. Let e be an

instantiation of variables E and t be a threshold. Let ΨPN∗,e,t be the CNF formula

given by Definition 6.6. Then, π∗-D-MPE(PN ∗, e, t) answers ”yes” if and only if D-

WMaxSAT(ΨPN∗,e,t, X+ log2 t+M ∗(Z+ |E|)) answers ”yes” where π∗-D-MPE

is given by Definition 6.3 and D-WMaxSAT is given by Definition 5.4.

The proof follows the same reasoning as the proof of Theorem 6.3.

To summarise Theorems 7.1, 7.2 and 7.3 show that the decision problem asso-

ciated with MPE inference is NP -complete for both min-based and product-based

possibilistic networks.

8. Conclusions

In the motivations section, we stressed out the fact that inference in probabilistic

graphical models is a hard task in the general case. For instance, answering MAP

queries in Bayesian networks is NPPP -complete [12, 29]. In this paper, we provide

complexity results for possibilistic networks. More precisely, MAP inference queries

are shown to be NP -complete. Moreover, these results are valid in both min-based

and product-based possibilistic networks. This paper also shows that the complex-

ity of MPE inference is also NP -complete. These results suggest that possibilistic

networks offer nice features and interesting advantages for reasoning with uncertain

information.

As future work lines, we will first investigate the study of computational com-

plexity in interval-based possibilistic networks which extend standard possibilistic

networks to allow assessing uncertainty by intervals of degrees instead of point-wise
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degrees. We think that our results on MAP and MPE queries will still hold in the

interval-based setting. Indeed, in interval-based possibilistic logic, the complexity of

conditioning is the same as the complexity of conditioning a standard possibilistic

knowledge base. We also believe that the nice complexity results of inference in pos-

sibilistic networks shown in this paper can benefit for inference in credal networks

by approximating inference in this latter through inference in possibilistic networks

by means of imprecise probability-possibility transformations [30,31].
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